skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Erdoğmuş, Deniz"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2025
  2. Subspace clustering algorithms are used for understanding the cluster structure that explains the patterns prevalent in the dataset well. These methods are extensively used for data-exploration tasks in various areas of Natural Sciences. However, most of these methods fail to handle confounding attributes in the dataset. For datasets where a data sample represent multiple attributes, naively applying any clustering approach can result in undesired output. To this end, we propose a novel framework for jointly removing confounding attributes while learning to cluster data points in individual subspaces. Assuming we have label information about these confounding attributes, we regularize the clustering method by adversarially learning to minimize the mutual information between the data representation and the confounding attribute labels. Our experimental result on synthetic and real-world datasets demonstrate the effectiveness of our approach. 
    more » « less
  3. This paper proposes a method to learn ap- proximations of missing Ordinary Differential Equations (ODEs) and states in physiological models where knowl- edge of the system’s relevant states and dynamics is in- complete. The proposed method augments known ODEs with neural networks (NN), then trains the hybrid ODE-NN model on a subset of available physiological measurements (i.e., states) to learn the NN parameters that approximate the unknown ODEs. Thus, this method can model an ap- proximation of the original partially specified system sub- ject to the constraints of known biophysics. This method also addresses the challenge of jointly estimating physio- logical states, NN parameters, and unknown initial condi- tions during training using recursive Bayesian estimation. We validate this method using two simulated physiolog- ical systems, where subsets of the ODEs are assumed to be unknown during the training and test processes. The proposed method almost perfectly tracks the ground truth in the case of a single missing ODE and state and performs well in other cases where more ODEs and states are missing. This performance is robust to input signal per- turbations and noisy measurements. A critical advantage of the proposed hybrid methodology over purely data-driven methods is the incorporation of the ODE structure in the model, which allows one to infer unobserved physiological states. The ability to flexibly approximate missing or inac- curate components in ODE models improves a significant modeling bottleneck without sacrificing interpretability. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  4. Converging evidence in human and animal models suggests that exogenous stimulation of the motor cortex (M1) elicits responses in the hand with similar modular structure to that found during voluntary grasping movements. The aim of this study was to establish the extent to which modularity in muscle responses to transcranial magnetic stimulation (TMS) to M1 resembles modularity in muscle activation during voluntary hand movements involving finger fractionation. EMG was recorded from eight hand-forearm muscles in nine healthy individuals. Modularity was defined using non-negative matrix factorization to identify low rank approximations (spatial muscle synergies) of the complex activation patterns of EMG data recorded during high density TMS mapping of M1 and voluntary formation of gestures in the American Sign Language alphabet. Analysis of synergies as a set, and individually, revealed greater than chance similarity between those derived from TMS and those derived from voluntary movement. Both datasets included synergies dominated by single intrinsic hand muscles presumably to meet the demand for highly fractionated finger movement. These results suggest a cortical role in combining corticospinal connectivity to individual intrinsic hand muscles with modular mulit-muscle activation via synergies. 
    more » « less
  5. null (Ed.)